Mover Média 38


Indicador de média móvel As médias móveis fornecem uma medida objetiva da direção da tendência ao suavizar os dados de preços. Normalmente calculado usando os preços de fechamento, a média móvel também pode ser usada com a mediana. típica. Fechamento ponderado. E preços altos, baixos ou abertos, bem como outros indicadores. As médias móveis de comprimento mais curto são mais sensíveis e identificam novas tendências anteriormente, mas também fornecem mais falsos alarmes. As médias móveis mais longas são mais confiáveis, mas menos sensíveis, apenas recuperando as grandes tendências. Use uma média móvel que é metade do comprimento do ciclo que você está rastreando. Se o comprimento do ciclo de pico a pico for aproximadamente 30 dias, então uma média móvel de 15 dias é apropriada. Se 20 dias, uma média móvel de 10 dias é apropriada. Alguns comerciantes, no entanto, usarão médias móveis de 14 e 9 dias para os ciclos acima, na esperança de gerar sinais ligeiramente à frente do mercado. Outros favorecem os números de Fibonacci de 5, 8, 13 e 21. As médias móveis de 20 a 40 semanas (20 a 40 semanas) são populares para ciclos mais longos de 20 a 65 dias (4 a 13 semanas), as médias móveis são úteis para ciclos intermediários e 5 Para 20 dias para ciclos curtos. O sistema de média móvel mais simples gera sinais quando o preço cruza a média móvel: Vá longo quando o preço cruza acima da média móvel abaixo. Fique curto quando o preço cruza abaixo da média móvel de cima. O sistema é propenso a whipsaws em mercados variados, com o cruzamento de preços de um lado para o outro através da média móvel, gerando uma grande quantidade de sinais falsos. Por essa razão, os sistemas móveis em média normalmente empregam filtros para reduzir whipsaws. Sistemas mais sofisticados utilizam mais de uma média móvel. Duas médias móveis usam uma média móvel mais rápida como substituto do preço de fechamento. Três médias móveis empregam a terceira média móvel para identificar quando o preço está variando. Múltiplas médias móveis usam uma série de seis médias móveis rápidas e seis médias móveis lentas para se confirmarem. As médias móveis deslocadas são úteis para fins de tendência, reduzindo o número de whipsaws. Os canais Keltner usam bandas plotadas em um múltiplo do alcance verdadeiro médio para filtrar os cruzamentos médios móveis. O popular MACD (Moving Average Convergence Divergence) indicador é uma variação do sistema de duas médias móveis, plotado como um oscilador que subtrai a média lenta da média em movimento rápido. Existem vários tipos diferentes de médias móveis, cada uma com suas próprias peculiaridades. As médias móveis simples são as mais fáceis de construir, mas também as mais propensas a distorção. As médias móveis ponderadas são difíceis de construir, mas confiáveis. As médias móveis exponenciais obtêm os benefícios da ponderação combinada com facilidade de construção. As médias móveis mais selvagens são usadas principalmente em indicadores desenvolvidos por J. Welles Wilder. Essencialmente, a mesma fórmula que as médias móveis exponenciais, eles usam diferentes métodos de pontuação para quais usuários precisam permitir. O Painel Indicador mostra como configurar as médias móveis. A configuração padrão é uma média móvel exponencial de 21 dias. Junte-se a nossa lista de endereços Leia o boletim informativo do Diário de negociação Colin Twiggs, com artigos educacionais sobre negociação, análise técnica, indicadores e atualizações de novos softwares. Sei que isso é viável com o aumento de acordo com: Mas eu realmente gostaria de evitar o uso de impulso. Eu mencionei e não encontrei nenhum exemplo adequado ou legível. Basicamente eu quero acompanhar a média móvel de um fluxo contínuo de um fluxo de números de ponto flutuante usando os números 1000 mais recentes como uma amostra de dados. Qual é a maneira mais fácil de conseguir isso, experimentei usar uma matriz circular, uma média móvel exponencial e uma média móvel mais simples e descobriu que os resultados da matriz circular correspondiam melhor às minhas necessidades. 12 de junho 12 às 4:38 Se suas necessidades são simples, você pode tentar usar uma média móvel exponencial. Simplificando, você faz uma variável de acumulador e, conforme seu código examina cada amostra, o código atualiza o acumulador com o novo valor. Você escolhe um alfa constante que está entre 0 e 1, e calcula isso: Você só precisa encontrar um valor de alfa onde o efeito de uma determinada amostra dura apenas cerca de 1000 amostras. Hmmm, na verdade, não tenho certeza de que isso é adequado para você, agora que eu coloquei aqui. O problema é que 1000 é uma janela bastante longa para uma média móvel exponencial. Não tenho certeza se houver um alfa que espalhe a média nos últimos 1000 números, sem fluxo inferior no cálculo do ponto flutuante. Mas se você quisesse uma média menor, como 30 números ou mais, esta é uma maneira muito fácil e rápida de fazê-lo. Respondeu 12 de junho 12 às 4:44 1 na sua postagem. A média móvel exponencial pode permitir que o alfa seja variável. Então isso permite que ele seja usado para calcular médias base de tempo (por exemplo, bytes por segundo). Se o tempo decorrido desde a última atualização do acumulador for superior a 1 segundo, você deixa alfa ser 1.0. Caso contrário, você pode deixar o alfa ser (usecs desde a última atualização 1000000). Ndash jxh 12 de junho 12 às 6:21 Basicamente eu quero acompanhar a média móvel de um fluxo contínuo de um fluxo de números de ponto flutuante usando os 1000 números mais recentes como amostra de dados. Observe que o abaixo atualiza o total como elementos como adicionados substituídos, evitando costumes O (N) para calcular a soma - necessária para a média - na demanda. Total é feito um parâmetro diferente de T para suportar, e. Usando um longo tempo quando totalizando 1000 long s, um int para char s, ou um duplo para float total s. Isso é um pouco falho em que numsamples poderia ultrapassar o INTMAX - se você se importar, você poderia usar um sinal não assinado por muito tempo. Ou use um membro adicional de dados do bool para gravar quando o recipiente é preenchido pela primeira vez ao andar de bicicleta numsamples em torno da matriz (o melhor que renomeou algo inócuo como pos). Respondeu 12 de junho 12 às 5:19 um assume que quotvoid operator (T sample) quot é realmente quotvoid operatorltlt (T sample) quot. Ndash oPless Jun 8 14 às 11:52 oPless ahhh. Bem visto. Na verdade, eu quis dizer que ele seria um operador vazio () (amostra T), mas é claro que você poderia usar qualquer notação que você gostasse. Vou consertar, obrigado. Ndash Tony D 8 jun 14 às 14:27

Comments

Popular Posts